Pathogenic Verticillium species are economically important plant pathogens that cause vascular wilt diseases in hundreds of plant species. The Ve1 gene of tomato confers resistance against race 1 strains of Verticillium dahliae and V. albo-atrum. Ve1 encodes an extracellular leucine-rich repeat (eLRR) receptor-like protein (RLP) that serves as a cell surface receptor for recognition of the recently identified secreted Verticillium effector Ave1. To investigate recognition of Ave1 by Ve1, alanine scanning was performed on the solvent exposed β-strand/β-turn residues across the eLRR domain of Ve1. In addition, alanine scanning was also employed to functionally characterize motifs that putatively mediate protein-protein interactions and endocytosis in the transmembrane domain and the cytoplasmic tail of the Ve1 protein. Functionality of the mutant proteins was assessed by screening for the occurrence of a hypersensitive response upon co-expression with Ave1 upon Agrobacterium tumefaciens-mediated transient expression (agroinfiltration). In order to confirm the agroinfiltration results, constructs encoding Ve1 mutants were transformed into Arabidopsis and the transgenes were challenged with race 1 Verticillium. Our analyses identified several regions of the Ve1 protein that are required for functionality. © 2014 Zhang et al.
CITATION STYLE
Zhang, Z., Song, Y., Liu, C. M., & Thomma, B. P. H. J. (2014). Mutational analysis of the Ve1 immune receptor that mediates Verticillium resistance in tomato. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099511
Mendeley helps you to discover research relevant for your work.