The methylase METTL3 is the writer enzyme of the N6-methyladenosine (m6A) modification of RNA. Using a structure-based drug discovery approach, we identified a METTL3 inhibitor with potency in a biochemical assay of 280 nM, while its enantiomer is 100 times less active. We observed a dose-dependent reduction in the m6A methylation level of mRNA in several cell lines treated with the inhibitor already after 16 h of treatment, which lasted for at least 6 days. Importantly, the prolonged incubation (up to 6 days) with the METTL3 inhibitor did not alter levels of other RNA modifications (i. e., m1A, m6Am, m7G), suggesting selectivity of the developed compound towards other RNA methyltransferases.
CITATION STYLE
Moroz-Omori, E. V., Huang, D., Kumar Bedi, R., Cheriyamkunnel, S. J., Bochenkova, E., Dolbois, A., … Caflisch, A. (2021). METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem, 16(19), 3035–3043. https://doi.org/10.1002/cmdc.202100291
Mendeley helps you to discover research relevant for your work.