Evolutionary crystal structure prediction and novel high-pressure phases

4Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed "crystal structure prediction problem", and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up to ~40 atoms in the unit cell using ab initio methods. Here we review this methodology, as well as recent progress in analyzing energy landscape of solids (which also helps to analyze results of USPEX runs). We show several recent applications - (1) prediction of new high-pressure phases of CaCO3, (2) search for the structure of the polymeric phase of CO2 ("phase V"), (3) high-pressure phases of oxygen, (4) exploration of possible stable compounds in the Xe-C system at high pressures, (5) exotic high-pressure phases of elements boron and sodium. © 2010 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Oganov, A. R., Ma, Y., Lyakhov, A. O., Valle, M., & Gatti, C. (2010). Evolutionary crystal structure prediction and novel high-pressure phases. NATO Science for Peace and Security Series B: Physics and Biophysics, 293–323. https://doi.org/10.1007/978-90-481-9258-8_25

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free