Phosphorylation of the N- and C-terminal UPF1 domains plays a critical role in plant nonsense-mediated mRNA decay

21Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nonsense-mediated mRNA decay (NMD) is an essential quality control system that degrades aberrant transcripts containing premature termination codons and regulates the expression of several normal transcripts. Targets for NMD are selected during translational termination. If termination is slow, the UPF1 NMD factor binds the eRF3 protein of the termination complex and then recruits UPF2 and UPF3. Consequently, the UPF1-2-3 NMD complex induces SMG7-mediated degradation of the target mRNA. It is unknown how formation of the NMD complex and transcript degradation are linked in plants. Previously we have shown that the N- and C-terminal domains of UPF1 act redundantly and that the N-terminal domain is phosphorylated. To clarify the role of UPF1 phosphorylation in plant NMD, we generated UPF1 mutants and analyzed their phosphorylation status and the NMD competency of the mutants. We show that although several residues in the N-terminal domain of UPF1 are phosphorylated, only three phosphorylated amino acids, S3, S13 and T29, play a role in NMD. Moreover, we found that the C-terminal domain consists of redundant S/TQ-rich segments and that S1076 is involved in NMD. All NMD-relevant phosphorylation sites were in the S/TQ context. Co-localization and fluorescence resonance energy transfer-fluorescence lifetime imaging assays suggest that N-terminal and probably also C-terminal phosphorylated S/TQ residues are the binding platform for SMG7. Our data support the hypothesis that phosphorylation of UPF1 connects NMD complex formation and the SMG7-mediated target transcript degradation steps of NMD. SMG7 binds the phosphorylated S/TQ sites of the UPF1 component of the NMD complex, and then it induces the degradation of the NMD target. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

References Powered by Scopus

Tape-arabidopsis sandwich - A simpler arabidopsis protoplast isolation method

701Citations
N/AReaders
Get full text

The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay

658Citations
N/AReaders
Get full text

Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay

496Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Polysomes, stress granules, and processing bodies: A dynamic triumvirate controlling cytoplasmic mRNA fate and function

137Citations
N/AReaders
Get full text

Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics

66Citations
N/AReaders
Get full text

Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems

63Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Kerényi, F., Wawer, I., Sikorski, P. J., Kufel, J., & Silhavy, D. (2013). Phosphorylation of the N- and C-terminal UPF1 domains plays a critical role in plant nonsense-mediated mRNA decay. Plant Journal, 76(5), 836–848. https://doi.org/10.1111/tpj.12346

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 25

58%

Researcher 15

35%

Professor / Associate Prof. 3

7%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 28

61%

Biochemistry, Genetics and Molecular Bi... 16

35%

Neuroscience 2

4%

Save time finding and organizing research with Mendeley

Sign up for free