A key consideration for the efficient operation of hybrid solar cells based upon conjugated polymers and inorganic semiconductor nanocrystals is charge transport in the nanocrystal phase. Here we report the results of a study into the charge transport kinetics of polymer/nanocrystal solar cells based on blends poly(3-hexylthiophene) (P3HT) with either CdSe nano-dots or CdSe nano-tetrapods. Transient photocurrent measurements reveal significant differences in the charge transport kinetics of nano-dot and nano-tetrapod hybrid cells, with the charge collection of the P3HT/CdSe nano-dot device severely limited by charge trapping. In comparison the nano-tetrapod cell exhibits significantly reduced charge trapping compared to the nano-dot cell accounting for the improved fill-factor and overall device efficiency. Transient photovoltage measurements have also been employed that demonstrate slower recombination rates in the P3HT/CdSe tetrapod device compared to the P3HT/CdSe dot device. These observations directly identify nanoparticle shape as a critical factor influencing the charge transport and hence recombination in this benchmark hybrid system, confirming the hypothesis that the use of tetrapods improves device performance through an improvement in electron transport in the nanocrystal phase. © the Partner Organisations 2014.
CITATION STYLE
Li, Z., Wang, W., Greenham, N. C., & McNeill, C. R. (2014). Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells. Physical Chemistry Chemical Physics, 16(47), 25684–25693. https://doi.org/10.1039/c4cp01111b
Mendeley helps you to discover research relevant for your work.