Deflectometry is a full-field gradient technique that lends itself very well to testing specular surfaces. It uses the geometry of specular reflection to determine the gradient of the surface under inspection. In consequence, a necessary precondition to apply deflectometry is the presence of at least partially specular reflection. Surfaces with larger roughness have increasingly diffuse reflection characteristics, making them inaccessible to usual deflectometry. However, many industrially relevant surfaces exist that change their reflection characteristic during production and processing. An example is metal sheets that are used as car body parts. Whereas the molded but otherwise raw metal sheets show a mostly diffuse reflection without sufficient specular reflection, the final car body panels have a high specular reflectance due to the lacquering. In consequence, it would be advantageous to apply the same inspection approach both for the raw material and for the final product. To solve this challenge, specular reflection from rough surfaces can be achieved using light with a larger wavelength, as the specular reflectivity of a surface depends on the ratio of the surface roughness and the wavelength of the light applied. Wavelengths in the thermal infrared range create enough specular reflection to apply deflectometry on many visually rough metal surfaces. This contribution presents the principles of thermal deflectometry, its special challenges, and illustrates its use with examples from the inspection of industrially produced surfaces.
CITATION STYLE
Höfer, S., Burke, J., & Heizmann, M. (2016, December 1). Infrared deflectometry for the inspection of diffusely specular surfaces. Advanced Optical Technologies. Walter de Gruyter GmbH. https://doi.org/10.1515/aot-2016-0051
Mendeley helps you to discover research relevant for your work.