American Southwest (ASW) megadroughts represent decadal-scale periods of dry conditions the near-term risks of which arise from natural low-frequency hydroclimate variability and anthropogenic forcing. A large single-climate-model ensemble indicates that anthropogenic forcing increases near-term ASW megadrought risk by a factor of 100; however, accurate risk assessment remains a challenge. At the global-scale we find that anthropogenic forcing may alter the variability driving megadroughts over 55% of land areas, undermining accurate assessments of their risk. For the remaining areas, current ensembles are too small to characterize megadroughts' driving variability. For example, constraining uncertainty in near-term ASW megadrought risk to 5 percentage points with high confidence requires 287 simulations. Such ensemble sizes are beyond current computational and storage resources, and these limitations suggest that constraining errors in near-term megadrought risk projections with high confidence—even in places where underlying variability is stationary—is not currently possible.
CITATION STYLE
Coats, S., & Mankin, J. S. (2016). The challenge of accurately quantifying future megadrought risk in the American Southwest. Geophysical Research Letters, 43(17), 9225–9233. https://doi.org/10.1002/2016GL070445
Mendeley helps you to discover research relevant for your work.