Radial angular momentum transfer and magnetic barrier for short-type gamma-ray-burst central engine activity

36Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Soft extended emission (EE) following initial hard spikes up to 100s was observed with Swift/BAT for about half of known short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of black-hole-neutron-star merger models, we study the roles of radial angular momentum transfer in the disk and the magnetic barrier around the black hole in the activity of SGRB central engines. We show that radial angular momentum transfer may significantly prolong the lifetime of the accretion process, which may be divided into multiple episodes by the magnetic barrier. Our numerical calculations based on models of neutrino-dominated accretion flows suggest that disk mass is critical for producing the observed EE. In the case of the mass being ∼ 0.88 M ·, our model can reproduce the observed timescale and luminosity of both the main and the EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE within about one order of magnitude and the timescale is shorter than 20s if the disk mass is ∼ 0.2 M·. Swift/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component could be a probe for the merger process and disk formation for compact star mergers. © 2012. The American Astronomical Society. All rights reserved.

Cite

CITATION STYLE

APA

Liu, T., Liang, E. W., Gu, W. M., Hou, S. J., Lei, W. H., Lin, L., … Zhang, S. N. (2012). Radial angular momentum transfer and magnetic barrier for short-type gamma-ray-burst central engine activity. Astrophysical Journal, 760(1). https://doi.org/10.1088/0004-637X/760/1/63

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free