Degradation of natural phosphorylated compounds and added polyphosphates in milk by Pseudomonas fluorescens CECT378, Lactococcus lactis CECT539, and Kluyveromyces marxianus CECT10584

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The degradation of natural phosphorylated compounds (galactose-1-phosphate, N-acetyl-glucosamine-1-phosphate, glycerophosphoethanolamine, and glycerophosphocholine) and added phosphorylated compounds (diphosphate) in milk was investigated by phosphorus 31 nuclear magnetic resonance on the incubation of a sterile milk with Pseudomonas fluorescens CECT381, Lactococcus lactis CECT539, and Kluyveromyces marxianus CECT10584. This preliminary study showed that the degradation of these compounds was dependent on the compound, microorganism, and temperature of incubation. K. marxianus CECT10584 did not show any capability to degrade these compounds, and L. lactis CECT539 was only able to degrade diphosphate at its optimum growth temperature. P. fluorescens CECT381 was the most active strain and possessed more hydrolytic capabilities at 10°C than at its optimum growth temperature. It is suggested that cold-induced enzymes are involved in the ability of P. fluorescens CECT381 to hydrolyze the natural phosphorylated compounds in milk. Consequent potential alterations of dairy products are discussed.

Cite

CITATION STYLE

APA

Belloque, J., & Carrascosa, A. V. (2002). Degradation of natural phosphorylated compounds and added polyphosphates in milk by Pseudomonas fluorescens CECT378, Lactococcus lactis CECT539, and Kluyveromyces marxianus CECT10584. Journal of Food Protection, 65(7), 1179–1182. https://doi.org/10.4315/0362-028X-65.7.1179

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free