Nano-Curcumin Prevents Copper Reproductive Toxicity by Attenuating Oxidative Stress and Inflammation and Improving Nrf2/HO-1 Signaling and Pituitary-Gonadal Axis in Male Rats

17Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Copper is essential for several cellular processes and is an important catalytic factor for many proteins. However, excess copper can provoke oxidative stress and reproductive toxicity. This study evaluated the effect of liposomal nano-curcumin (N-CUR) and CUR on testicular oxidative injury, inflammation, and apoptosis, and altered steroidogenesis and Nrf2/HO-1 signaling induced by copper sulfate (CuSO4). Rats received CuSO4 and N-CUR or CUR via oral gavage for 7 days. CuSO4 induced histopathological changes and altered pituitary-gonadal axis manifested by decreased serum gonadotropins and testosterone. Testicular steroidogenesis genes (StAR, 3β-HSD, CYP17A1, and 17β-HSD) and androgen receptor (AR) were downregulated in rats that received CuSO4. N-CUR and CUR prevented testicular tissue injury, increased circulating FSH, LH, and testosterone, and upregulated testicular steroidogenesis genes and AR. Additionally, N-CUR and CUR decreased testicular MDA, NO, NF-κB, iNOS, TNF-α, Bax, and caspase-3 while enhanced Bcl-2, Nrf2, and the antioxidants GSH, HO-1, SOD, and catalase. In conclusion, N-CUR and CUR prevented CuSO4-induced reproductive toxicity in male rats by suppressing oxidative injury and inflammatory response and boosting steroidogenesis, sex hormones, and Nrf2/HO-1 signaling. N-CUR was more effective in ameliorating tissue injury, oxidative stress, inflammation, and apoptosis and enhancing steroidogenesis and Nrf2/HO-1 than the native form.

References Powered by Scopus

Analysis of relative gene expression data using real-time quantitative PCR and the 2<sup>-ΔΔC</sup>T method

149930Citations
N/AReaders
Get full text

Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction

25875Citations
N/AReaders
Get full text

Tissue sulfhydryl groups

23301Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Quercetin Alleviates Toxicity Induced by High Levels of Copper in Porcine Follicular Granulosa Cells by Scavenging Reactive Oxygen Species and Improving Mitochondrial Function

9Citations
N/AReaders
Get full text

A metabolomic perspective on the mechanisms by which environmental pollutants and lifestyle lead to male infertility

6Citations
N/AReaders
Get full text

Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review

4Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sarawi, W. S., Alhusaini, A. M., Fadda, L. M., Alomar, H. A., Albaker, A. B., Alghibiwi, H. K., … Mahmoud, A. M. (2022). Nano-Curcumin Prevents Copper Reproductive Toxicity by Attenuating Oxidative Stress and Inflammation and Improving Nrf2/HO-1 Signaling and Pituitary-Gonadal Axis in Male Rats. Toxics, 10(7). https://doi.org/10.3390/toxics10070356

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 2

50%

Lecturer / Post doc 1

25%

Researcher 1

25%

Readers' Discipline

Tooltip

Chemical Engineering 1

25%

Environmental Science 1

25%

Engineering 1

25%

Medicine and Dentistry 1

25%

Save time finding and organizing research with Mendeley

Sign up for free