It is of great significance to design electrochemical energy conversion and storage materials with excellent performance to fulfill the growing energy demand. Bimetallic cobalt/nickel-based electrode materials exhibit excellent electrical conductivity compared to mono oxides. However, their potential as electrode materials for high-performance supercapacitors (SCs) is limited because of their poor cycling stability and high-capacity fading. This work demonstrates the synthesis of binder-free bimetallic NiCo2O4 nano-needles supported on CC (NCO@CC) via a facile and scalable hydrothermal process. Excellent electrical conductivity and interconnected nanostructure of NCO@CC nanoneedles provide the fast transfer of electrons with numerous channels for ion diffusion. Owing to such features, the binder-free NCO@CC electrode for SC discloses excellent specific capacitance (1476 Fg−1 at 1.5 Ag−1 ) with 94.25% capacitance retention even after 5000 cycles. From these outstanding electrochemical performances, it can be inferred that NCO@CC nano-needle array-structured electrodes may be potential candidates for SC applications.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Abbas, Q., Siyal, S. H., Mateen, A., Hassan, N. U., Idrees, A., Rehman, Z. U., … Javed, M. S. (2022). Hydrothermal Synthesis of Binder-Free Metallic NiCo2O4 Nano-Needles Supported on Carbon Cloth as an Advanced Electrode for Supercapacitor Applications. Materials, 15(13). https://doi.org/10.3390/ma15134499