Adaptive vibration control system for MR damper faults

11Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.

Cite

CITATION STYLE

APA

Tudón-Martínez, J. C., & Morales-Menendez, R. (2015). Adaptive vibration control system for MR damper faults. Shock and Vibration, 2015. https://doi.org/10.1155/2015/163694

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free