DNA from 32 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria from diverse locations was probed with the first three genes of the well-known 2,4-D degradation pathway found in Alcaligenes eutrophus JMPI34(pJP4). The majority of strains did not show high levels of homology to the first three genes of the 2,4-D degradation pathway, tfdA, -B, and -C. Most strains showed combinations of tfdA-, B-, and C-like elements that exhibited various degrees of homology to the gene probes. Strains having the same genomic fingerprints (as determined by repetitive extragenic palindromic PCR) exhibited the same hybridization pattern regardless of the geographic origin of the strain, with the exception of a strain isolated from Puerto Rico. This strain had the same genomic fingerprint as that of numerous other strains in the collection but differed in its hybridization against the tfdA gene probe. Members of the β subdivision of the Proteobacteria class, specifically Alcaligenes, Burkholderia, and Rhodoferax species, carried DNA fragments with 60% or more sequence similarity to tfdA of pJP4, and most carried fragments showing at least 60% homology to tfdB. However, many strains did not hybridize with tfdC, although they exhibited chlorocatechol dioxygenase activity. Members of the α subdivision of the Proteobacteria class, mostly of the genus Sphingomonas, did not hybridize to either tfdA or tfdC, but some hybridized at low stringency to tfdB. The data suggest that extensive interspecies transfer of a variety of homologous degradative genes has been involved in the evolution of 2,4-D-degrading bacteria.
CITATION STYLE
Fulthorpe, R. R., McGowan, C., Maltseva, O. V., Holben, W. E., & Tiedje, J. M. (1995). 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Applied and Environmental Microbiology, 61(9), 3274–3281. https://doi.org/10.1128/aem.61.9.3274-3281.1995
Mendeley helps you to discover research relevant for your work.