LTC4 synthase: Enzymology, biochemistry, and molecular characterization

23Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

LTC4S conjugates reduce glutathione to LTA4 and is positioned as the pivotal and only committed enzyme involved in the formation of cysteinyl LTs. Despite its function as an enzyme that conjugates glutathione to LTA4, it is abundantly clear that LTC4S differs from the classic glutathione S- transferase (GST) families. This distinction is based on narrow substrate specificity, inability to conjugate GSH to xenobiotics, differential susceptibility to inhibitors, lack of homology, and failure to be immunorecognized by specific microsomal GST antibodies. The presence of LTC4S protein is restricted to a limited number of hematopoietic cells to include mast cells, eosinophils, basophils, monocytes/macrophages, and platelets, with the platelet being unique in its lack of the complete biosynthetic pathway for cysteinyl LTs. The purification of the protein and the cloning of the cDNA have demonstrated that the kinetic parameters of LTC4S are similar for the isolated natural or recombinant proteins. The protein is an 18-kDa integral perinuclear membrane enzyme, which is functional as a homodimer. The cDNA encodes a 150 amino-acid polypeptide monomer with three hydrophobic domains interspersed by two hydrophilic loops. Homology and secondary structural predictions have revealed that LTC4S is a member of a novel gene family that includes FLAP, mGST II, and mGST III. Each of these molecules is an integral membrane protein with the capacity to participate in LT biosynthesis: LTC4S as the terminal and only committed enzyme in cysteinyl LT formation, FLAP as an arachidonic acid presentation protein, and mGST II and mGST III as unique dual-function enzymes with primary detoxification functions. Site directed mutagenic studies of LTC4S have revealed that two residues, R51 and Y93, are involved in the acid and base catalysis, respectively, of LTA4 and GSH. Alignment of molecules with LTA4 conjugating ability demonstrates conservation of amino acid residues R51 and Y93, which appear necessary for this specific enzymatic function. The 2.5-Kb gene for human LTC4S contains five small exons and four introns, and the 5' UTR contains consensus sequences for AP-1 and AP-2 sites as well as an SP-1 site. The chromosomal localization of this gene is 5q35, distal to that of cytokine, growth factor, and receptor genes that have relevance to the development of allergic inflammation. Furthermore, there is genetic linkage of this region of human chromosome 5 to atopy and asthma, whereas no linkage exists for the chromosomal localization of the other family members, FLAP and mGST II, distinguishing LTC4S as a unique member of the novel gene family. LTC4S is profoundly overexpressed in the aspirin-induced asthmatic phenotype and correlates with overproduction of cysteinyl LTs and bronchial hyperreactivity to lysine aspirin. Ongoing studies are directed to the genomic regulation and additional polymorphisms within the gene of this pivotal enzyme, as well as to further identification of the amino acid residues central to its catalytic function.

Cite

CITATION STYLE

APA

Penrose, J. F. (1999). LTC4 synthase: Enzymology, biochemistry, and molecular characterization. Clinical Reviews in Allergy and Immunology. Humana Press. https://doi.org/10.1007/BF02737601

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free