In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demonstrate that this learning algorithm allows agents to effectively model world dynamics. © 2007 AI Access Foundation. All rights reserved.
CITATION STYLE
Pasula, H. M., Zettlemoyer, L. S., & Kaelbling, L. P. (2007). Learning symbolic models of stochastic domains. Journal of Artificial Intelligence Research, 29, 309–352. https://doi.org/10.1613/jair.2113
Mendeley helps you to discover research relevant for your work.