Composite beams have a wide application in building and bridge engineering because of their advantages of mechanical properties, constructability and economic performance. Unlike static characteristics, the methods of studying the dynamic characteristics of partial-interaction composite beams were limited, especially dynamic stiffness matrix method. In this article, the dynamic stiffness matrix of partial-interaction composite beams was derived based on the assumption of the Euler-Bernoulli beam theory, and then it was used to predict the frequencies of the free vibration of the single-span composite beams with various boundary conditions or different axial forces. The corresponding vibration modes and buckling loads were also obtained. From the comparison with the existing results, the numerical results obtained by the proposed method agreed reasonably with those in the literatures. The dynamic stiffness matrix method is an accurate method which can determine natural vibration frequencies and vibration mode shapes in any precision theoretically. As a result, when the higher precision or natural frequencies of higher order are required, the dynamic stiffness matrix method is superior when compared to other approximate and numerical methods. The dynamic stiffness matrix method can also be combined with the finite-element method to calculate the free vibration frequencies and natural mode shapes of composite beams in complex conditions.
CITATION STYLE
Bao, G., & Xu, R. (2015). Dynamic stiffness matrix of partial-interaction composite beams. Advances in Mechanical Engineering, 7(3), 1–7. https://doi.org/10.1177/1687814015575990
Mendeley helps you to discover research relevant for your work.