Metal matrix composites (MMCs) have wide applications due to being lightweight, their high strength, and immense resistance to wear. To explore new generation materials like aluminum-based metal matrix composites (AMCs) for wide engineering applications, the present work aimed at investigating the effect of changes in composition, sintering time, and temperature on the hardness and surface roughness of AMCs containing SiC and ZrSiO4 in wt % of 5, 20, 30, and 40 binary and hybrid sample pallets. The samples have been prepared by powder metallurgy (PM) method under 1000 psi pressure. After compaction, the above pallets sintered at different temperatures ranging from 500◦C to 1100◦C with an increment of 200◦C and 15 min intervals for four levels of temperature and time, respectively. Afterwards, sensitivity analysis has been done by investigating the effect of chemical composition, sintering time, and sintering temperature of the binary and hybrid composites on hardness and surface roughness. Morphological studies on the composites were carried out using field emission scanning electron microscope (FESEM) with energy dispersive spectroscopy (EDS). It has been observed that hardness is increased by increasing the sintering temperature in the case of SiC, whereas surface roughness did not change much by changing the composition. Additionally, a rise in temperature lead to liquid-state sintering. SEM images obtained during the elemental analysis showed that porosity is generated within the samples after sintering due to the higher melting point of reinforcements compared to a base metal, i.e., aluminum. Mathematical equations have also been developed via regression analysis using Minitab and excel for the confirmation and validation of experimental data. Analysis of Variance (ANOVA) has also been done, and its tables are shown and discussed in the paper. Hence, the most optimized findings relating the changes in the composition of reinforcements, sintering temperature, and sintering time (input variables) with porosity, hardness, and surface roughness have been presented in the current study.
CITATION STYLE
Gillani, F., Khan, M. Z., & Shah, O. R. (2022). Sensitivity Analysis of Reinforced Aluminum Based Metal Matrix Composites. Materials, 15(12). https://doi.org/10.3390/ma15124225
Mendeley helps you to discover research relevant for your work.