The interaction of the respiratory syncytial virus (RSV) Matrix (M) protein with the plasma membrane was investigated using polyclonal and monoclonal antisera raised against recombinant M expressed in bacteria. M bound mainly to the plasma membrane, although a significant proportion bound to internal membranes. However, no localisation of M with the Golgi was observed, suggesting that transport of M to the plasma membrane was independent of the transport mechanism for the viral glycoproteins. Expression from a recombinant baculovirus demonstrated the ability of M to bind membranes in the absence of viral glycoprotein expression. When cell-surface expression of the viral glycoproteins was prevented using Brefeldin A, M was still found in association with the plasma membrane, but the characteristics of M's membrane-binding ability were different to that found in untreated infected cells. In the presence of normal glycoprotein expression, M was sorted into lipid rafts and, in addition, formed structures that could only be disrupted by treatment with high salt buffers, a feature suggesting an interaction with the cytoskeleton or the formation of strong intramolecular associations. Brefeldin A prevented M from being sorted into lipid rafts or from forming strong intramolecular associations. Brefeldin A also affected the stability of M bound to the plasma membrane, as M was more readily dissociated in the presence of the inhibitor. Coexpression of M and F resulted in the incorporation of M into lipid rafts but did not cause the formation of the strong intramolecular bonds, suggesting that additional factors are required for this phenomena. © 2002 Elsevier Science (USA).
CITATION STYLE
Henderson, G., Murray, J., & Yeo, R. P. (2002). Sorting of the respiratory syncytial virus matrix protein into detergent-resistant structures is dependent on cell-surface expression of the glycoproteins. Virology, 300(2), 244–254. https://doi.org/10.1006/viro.2002.1540
Mendeley helps you to discover research relevant for your work.