This paper presents a new three-dimensional lattice Boltzmann interface capturing method for incompressible flows following the work of Zheng et al. (Phys. Rev. E 2005; 72:056705). As shown in the paper, the fourth rank isotropic property of the lattice tensor is not needed for interface capturing. As a result, a new D3Q7 (D3 means three dimensional, Q7 means seven velocity bits) lattice velocity model and its associated equilibrium distribution functions are proposed in the paper. The proposed model is validated by comparing its numerical results with those of an existing lattice Boltzmann interface capturing model (J. Comput. Phys. 2004; 198:628-644) and three-dimensional direction split flux-corrected transport method (Int. J. Numer. Meth. Fluids 1997; 24:671-691). Numerical results showed that the present model performs better than the existing methods in capturing the interface. It greatly improves the computational efficiency and saves at least half of the memory as compared to other lattice Boltzmann interface capturing models. Copyright © 2007 John Wiley & Sons, Ltd.
CITATION STYLE
Zheng, H. W., Shu, C., Chew, Y. T., & Sun, J. H. (2008). Three-dimensional lattice Boltzmann interface capturing method for incompressible flows. International Journal for Numerical Methods in Fluids, 56(9), 1653–1671. https://doi.org/10.1002/fld.1563
Mendeley helps you to discover research relevant for your work.