Fossil oceanic core complexes in the Alps. New field, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d’Hérens, Western Alps, Switzerland)

14Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Exhumation of basement rocks on the seafloor is a worldwide feature along passive continental margins and (ultra-) slow-spreading environments, documented by dredging, drilling or direct observations by diving expeditions. Complementary observations from exhumed ophiolites in the Alps allow for a better understanding of the underlying processes. The Aiguilles Rouges ophiolitic units (Val d’Hérens, Switzerland) are composed of kilometre-scale remnants of laterally segmented oceanic lithosphere only weakly affected by Alpine metamorphism (greenschist facies, Raman thermometry on graphite: 370–380 °C) and deformation. Geometries and basement-cover sequences comparable to the ones recognized in actual (ultra-) slow-spreading environments were observed, involving exhumed serpentinized and carbonatized peridotites, gabbros, pillow basalts and tectono-sedimentary cover rocks. One remarkable feature is the presence of a kilometric gabbroic complex displaying preserved magmatic minerals, textures and crosscutting relationships between the host gabbro and intruding diabase, hornblende-bearing dikelets or plagiogranite. The bulk major and trace element chemistry of mafic rocks is typical of N-MORB magmatism (CeN/YbN: 0.42–1.15). This is supported by in-situ isotopic signatures of magmatic zircons (εHf = + 13 ± 0.6) and apatites (εNd = + 8.5 ± 0.8), determined for gabbros and plagiogranites. In-situ U–Pb dating was performed on zircons by laser ablation-ICP-MS, providing ages of 154.9 ± 2.6 Ma and 155.5 ± 2.8 Ma, which are among the youngest for oceanic gabbros in the Alps. Our study suggests that the former Aiguilles Rouges domain was characterized by tectonism and magmatism resembling present-day (ultra-) slow-spreading seafloor. It also suggests that the Tethyan lithosphere is laterally segmented, with punctuated magmatism such as the Aiguilles Rouges gabbros and carbonated ultramafic seafloor covered by basalts and Jurassic tectono-sedimentary deposits.

Cite

CITATION STYLE

APA

Decrausaz, T., Müntener, O., Manzotti, P., Lafay, R., & Spandler, C. (2021). Fossil oceanic core complexes in the Alps. New field, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d’Hérens, Western Alps, Switzerland). Swiss Journal of Geosciences, 114(1). https://doi.org/10.1186/s00015-020-00380-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free