Phase noise cancellation in coherent communication systems using a radio frequency pilot tone

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Long-haul optical fiber communication employing digital signal processing (DSP)-based dispersion compensation can be distorted by the phenomenon of equalization-enhanced phase noise (EEPN), due to the reciprocities between the dispersion compensation unit and the local oscillator (LO) laser phase noise (LPN). The impact of EEPN scales increases with the increase of the fiber dispersion, laser linewidths, symbol rates, signal bandwidths, and the order of modulation formats. In this work, the phase noise cancellation (PNC) employing a radio frequency (RF) pilot tone in coherent optical transmission systems has been investigated. A 28-Gsym/s QPSK optical transmission system with a significant EEPN has been implemented, where the carrier phase recovery (CPR) was realized using the one-tap normalized least-mean-square (NLMS) estimation and the differential phase detection (DPD), respectively. It is shown that the RF pilot tone can entirely eliminate the LPN and efficiently suppress the EEPN when it is applied prior to the CPR.

Cite

CITATION STYLE

APA

Xu, T., Jin, C., Zhang, S., Jacobsen, G., Popov, S., Leeson, M., & Liu, T. (2019). Phase noise cancellation in coherent communication systems using a radio frequency pilot tone. Applied Sciences (Switzerland), 9(21). https://doi.org/10.3390/app9214717

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free