Background: Surgical implant material has changed over time, from metal to stainless steel to titanium. In recent decades a new material, carbon-fibre-reinforced polyether ether ketone, has been introduced. The aim of this study was to assess the clinical and radiological feasibility and functional outcome after treatment of distal radius fractures with this new implant. Methods: Inclusion criteria: AO type B distal radius fractures treated with 2.7 mm CF/PEEK plates at one Level 1 trauma centre between 2016 and 2017. Follow-up period 1 year, measurement of range of motion and radiographic assessment, histological analysis of debris only after plate removal. Results: Out of 112 eligible patients, 10 (8.9%) patients were included. Mean operation time was 65 ± 10 min. Radiographic healing was confirmed by radiologists at 6 weeks follow-up. During one-year follow-up, no adverse events were reported and functionality and patients subjective satisfaction improved significantly (p < 0.05). Only one plate was removed, with no histological signs of inflammation or allergic reaction. Conclusions: The 2.7 mm CF/PEEK plate osteosynthesis appears to be a reliable and safe implant for certain types of distal radius fracture. Assessment of fracture union is substantially more practical and functionality improved significantly over 1 year.
CITATION STYLE
Allemann, F., Halvachizadeh, S., Rauer, T., & Pape, H. C. (2019). Clinical outcomes after carbon-plate osteosynthesis in patients with distal radius fractures. Patient Safety in Surgery, 13(1). https://doi.org/10.1186/s13037-019-0210-8
Mendeley helps you to discover research relevant for your work.