Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model

43Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47—the most abundant PBDE congener—with four OPFR (isopropylated phenyl phosphate—IPP, triphenyl phosphate—TPHP, isodecyl diphenyl phosphate—IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)—TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1–5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell–cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.

Cite

CITATION STYLE

APA

Hogberg, H. T., de Cássia da Silveira E Sá, R., Kleensang, A., Bouhifd, M., Cemiloglu Ulker, O., Smirnova, L., … Hartung, T. (2021). Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Archives of Toxicology, 95(1), 207–228. https://doi.org/10.1007/s00204-020-02903-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free