Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain

4Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Non-structural 1 (NS1) protein is a key virulence factor that regulates replication of influenza virus. A recombinant H5N1 virus lacking the eIF4GI-binding domain of NS1 (rNS1-SD30) exhibits significantly lower pathogenicity than H5N1 virus with an intact eIF4GI-binding domain (rNS1-wt). To further investigate this phenomenon, we performed comparative proteomics analyses to profile host proteins in chicken embryo fibroblasts (CEFs) infected with rNS1-wt and rNS1-SD30 viruses. In total, 81 differentially expressed (DE) proteins were identified at 12, 24, and 36 h post-infection. These proteins are mainly involved in the cytoskeletal, apoptotic and stress responses, transcription regulation, transport and metabolic processes, mRNA processing and splicing, and cellular signal transduction. Overexpression of DE proteins revealed that ANXA7 suppresses propagation of rNS1-SD30, but not rNS1-wt viruses. Moreover, ALDH7A1, ANXA7, and DCTN2 strongly enhanced IFN-β promoter activity induced by chicken MDA5 (chMDA5), and in the case of ANXA7, also by the rNS1-SD30 viral strain. NS1-wt co-transfection suppressed the ANXA7-mediated increase in IFN-β promoter activity induced by chMDA5. These findings highlight the role of NS1 eIF4GI binding domain in H5N1 pathogenicity, and may contribute to the design of antiviral strategies to reduce the high morbidity and mortality associated with this pathogen.

Cite

CITATION STYLE

APA

Guo, K., Lin, X., Li, Y., Qian, W., Zou, Z., Chen, H., … Jin, M. (2018). Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain. Oncotarget, 9(9), 8350–8367. https://doi.org/10.18632/oncotarget.23615

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free