Development of risk prediction models for glioma based on genome-wide association study findings and comprehensive evaluation of predictive performances

3Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Over 14 common single nucleotide polymorphisms (SNP) have been consistently identified from genome-wide association studies (GWAS) as associated with glioma risk in European background. The extent to which and how these genetic variants can improve the prediction of glioma risk has was not been investigated. In this study, we employed three independent case-control datasets in Chinese populations, tested GWAS signals in dataset1, validated association results in dataset2, developed prediction models in dataset2 for the consistently replicated SNPs, refined the consistently replicated SNPs in dataset3 and developed tailored models for Chinese populations. For model construction, we aggregated the contribution of multiple SNPs into genetic risk scores (count GRS and weighed GRS) or predicted risks from logistic regression analyses (PRFLR). In dataset2, the area under receiver operating characteristic curves (AUC) of the 5 consistently replicated SNPs by PRFLR(SNPs) was 0.615, higher than those of all GRSs(ranging from 0.607 to 0.611, all P>0.05). The AUC of genetic profile significantly exceeded that of family history (fmc) alone (AUC=0.535, all P<0.001). The best model in our study comprised "PRURA +fmc" (AUC=0.646) in dataset3. Further model assessment analyses provided additional evidence. This study indicates that genetic markers have potential value for risk prediction of glioma.

Cite

CITATION STYLE

APA

Zhao, Y., Chen, G., Yu, H., Hu, L., Bian, Y., Yun, D., … Lu, D. (2018). Development of risk prediction models for glioma based on genome-wide association study findings and comprehensive evaluation of predictive performances. Oncotarget, 9(9), 8311–8325. https://doi.org/10.18632/oncotarget.10882

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free