Brefeldin A inhibits circadian remodeling of chloroplast structure in the dinoflagellate Gonyaulax

20Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Circadian increases in the rate of carbon fixation in the dinoflagellate Gonyaulax are correlated with extensive plastid remodeling. One marker for this remodeling is mobilization of ribulose bisphosphate carboxylase/oxygenase (Rubisco) from the plastid periphery to plastid regions nearer the cell center called pyrenoids. Nuclear-encoded proteins such as Rubisco transit through the Golgi in dinoflagellates; hence, we blocked protein import into the plastids using Brefeldin A (BFA) to explore the mechanism for plastid remodeling. We find that pyrenoid formation normally occurs concurrently with increased Rubisco synthesis rates in vivo, and when BFA is given prior to the onset of Rubisco synthesis, pyrenoid formation is partially or completely inhibited by 0.1 or 0.3 μg/mL BFA, respectively. Rubisco synthesis itself is not affected, and BFA-treated cells accumulate Rubisco in novel structures we term BFA bodies. Interestingly, when given just after the onset of Rubisco synthesis, BFA delays but does not block Rubisco mobilization, suggesting that a timing signal for plastid remodeling is delivered to the organelles at the same time as newly synthesized Rubisco. BFA also inhibits the circadian increases in carbon fixation rates, supporting the hypothesis that the biochemical basis for this circadian rhythm may be Rubisco distribution within the plastid. Copyright © Blackwell Munksgaard 2005.

Cite

CITATION STYLE

APA

Nassoury, N., Wang, Y., & Morse, D. (2005). Brefeldin A inhibits circadian remodeling of chloroplast structure in the dinoflagellate Gonyaulax. Traffic, 6(7), 548–561. https://doi.org/10.1111/j.1600-0854.2005.00296.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free