Background: Nitrogen-containing bisphosphonates (BIS) are potent therapeutics in osteoporosis, but their use may result in osteonecrotic side-effects in the maxillofacial region. Periosteal microcirculatory reactions may contribute to the development of bone-healing complications, particularly in osteoporotic bones, where ischemia-reperfusion (IR) events often develop during orthopaedic/trauma interventions. The effect of BIS on the inflammatory reactions of appendicular long bones has not yet been evaluated; thus, we aimed to examine the influence of chronic zoledronate (ZOL) administration on the periosteal microcirculatory consequences of hindlimb IR in osteopenic rats. Materials and methods: Twelve-week-old female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated, and ZOL (80 μg/kg iv, weekly) or a vehicle was administered for 8 weeks, 4 weeks after the operation. At the end of the pre-treatment protocols, 60-min limb ischemia was induced, followed by 180-min reperfusion. Leukocyte-endothelial interactions were quantitated in tibial periosteal postcapillary venules by intravital fluorescence videomicroscopy. CD11b expression of circulating polymorphonuclear leukocytes (PMN, flow cytometry) and plasma TNF-alpha levels (ELISA) were also determined. Two-way RM ANOVA followed by the Holm-Sidak and Dunn tests was used to assess differences within and between groups, respectively. Results: Limb IR induced significant increases in PMN rolling and firm adhesion in sham-operated and OVX rats, which were exacerbated temporarily in the first 60 min of reperfusion by a ZOL treatment regimen. Postischemic TNF-alpha values showed a similar level of postischemic elevations in all groups, whereas CD11b expression only increased in rats not treated with ZOL. Conclusions: The present data do not show substantial postischemic periosteal microcirculatory complications after chronic ZOL treatment either in sham-operated or OVX rats. The unaltered extent of limb IR-induced local periosteal microcirculatory reactions in the presence of reduced CD11b adhesion molecule expression on circulating PMNs, however, may be attributable to local endothelial injury/activation caused by ZOL.
CITATION STYLE
Pócs, L., Janovszky, Á., Ocsovszki, I., Kaszaki, J., Piffkó, J., & Szabó, A. (2019). Microcirculatory consequences of limb ischemia/reperfusion in ovariectomized rats treated with zoledronic acid. Journal of Orthopaedic Surgery and Research, 14(1). https://doi.org/10.1186/s13018-019-1117-x
Mendeley helps you to discover research relevant for your work.