Mechanical failure in microstructural heterogeneous materials

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Various heterogeneous materials with multiple scales and multiple phases in the microstructure have been produced in the recent years. We consider a mechanical failure due to the initiation and propagation of cracks in places of high pore density in the microstructures. A multi-scale method based on the asymptotic homogenization theory together with the mesh superposition method (s-version of FEM) is presented for modeling of cracks. The homogenization approach is used on the global domain excluding the vicinity of the crack where the periodicity of the microstructures is lost and this approach fails. The multiple scale method relies on efficient combination of both macroscopic and microscopic models. The mesh superposition method uses two independent (global and local) finite element meshes and the concept of superposing the local mesh onto the global continuous mesh in such a way that both meshes not necessarily coincide. The homogenized material model is considered on the global mesh while the crack is analyzed in the local domain (patch) which allows to have an arbitrary geometry with respect to the underlying global finite elements. Numerical experiments for biomorphic cellular ceramics with porous microstructures produced from natural wood are presented. © Springer-Verlag Berlin Heidelberg 2007.

Cite

CITATION STYLE

APA

Bordas, S., Hoppe, R. H. W., & Petrova, S. I. (2007). Mechanical failure in microstructural heterogeneous materials. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4310 LNCS, pp. 533–541). Springer Verlag. https://doi.org/10.1007/978-3-540-70942-8_64

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free