Ultrasensitive UPLC-MS-MS Method for the Quantitation of Etheno-DNA Adducts in Human Urine

10Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Etheno-DNA adducts are generated from the metabolism of exogenous carcinogens and endogenous lipid peroxidation. We and others have previously reported that 1,N6-ethenodeoxyadenosine (εdA) and 3,N4-ethenodeoxycytidine (εdC) are present in human urine and can be utilized as biomarkers of oxidative stress. In this study, we report a new ultrasensitive UPLC-ESI-MS/MS method for the analysis of εdA and εdC in human urine, capable of detecting 0.5 fmol εdA and 0.3 fmol εdC in 1.0 mL of human urine, respectively. For validation of the method, 20 human urine samples were analyzed, and the results revealed that the mean levels of εdA and εdC (SD) fmol/μmol creatinine are 5.82 ± 2.11 (range 3.0–9.5) for εdA and 791.4 ± 328.8 (range 116.7–1264.9) for εdC in occupational benzene-exposed workers and 2.10 ± 1.32 (range 0.6–4.7) for εdA and 161.8 ± 200.9(range 1.8–557.5) for εdC in non-benzene-exposed workers, respectively. The ultrasensitive detection method is thus suitable for applications in human biomonitoring and molecular epidemiology studies.

Cite

CITATION STYLE

APA

Cui, S., Li, H., Wang, S., Jiang, X., Zhang, S., Zhang, R., & Sun, X. (2014). Ultrasensitive UPLC-MS-MS Method for the Quantitation of Etheno-DNA Adducts in Human Urine. International Journal of Environmental Research and Public Health, 11(10), 10902–10914. https://doi.org/10.3390/ijerph111010902

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free