This research details the design, fabrication, and partial testing of a concentrated solar receiver and an air-cooled heat exchanger. The solar receiver and heat exchanger have been fabricated for use in an experimental system that uses the supercritical carbon dioxide Brayton cycle. They are coupled with a Science Applications International Corporation (SAIC) solar dish 250× concentrator located on the University of Nevada, Las Vegas campus. The purpose of this solar-powered supercritical CO2 system is to function as a testbed for testing the cycle, system components, and alternate system configurations. Photographic flux mapping of the dish showed peak solar flux just above 200× and is used to appropriately size the receiver. Sun tests of the tubing, receiver, and air-cooled heat exchanger were performed achieving fluid temperatures in the range of 973 K (700 °C) using nitrogen in an open loop at low mass flowrates, and above 1173-K (900 °C) receiver wall temperatures in a no-flow case.
CITATION STYLE
Nobles-Lookingbill, D., Sahm, A., Hurt, R., & Boehm, R. (2020). Design, fabrication, and partial characterization of a solar receiver and air-cooled heat exchanger for a concentrated solar power supercritical co2testbed. Journal of Solar Energy Engineering, Transactions of the ASME, 142(6). https://doi.org/10.1115/1.4046631
Mendeley helps you to discover research relevant for your work.