Local Earthquake Tomography at Los Humeros Geothermal Field (Mexico)

15Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A passive seismic experiment using 25 broadband and 20 short-period stations was conducted between September 2017 and September 2018 at Los Humeros geothermal field, an important natural laboratory for superhot geothermal systems in Mexico. From the recorded local seismicity, we derive a minimum 1-D velocity model and obtain 3-D Vp and Vp/Vs structures of Los Humeros. We improved the classical local earthquake tomography by using a postprocessing statistical approach. Several inversions were computed and averaged to reduce artifacts introduced by the model parametrization and to increase the resolution of the investigated region. Finally, the resulting Vp and Vp/Vs structures and associated seismicity were integrated with newly acquired geophysical and petrophysical data for comprehensive interpretation. The recorded seismicity is mainly grouped in three clusters, two of which seem directly related to exploitation activities. By combining new laboratory measurements and existing well data with our Vp model, we estimate possible geological unit boundaries. One large intrusion-like body in the Vp model, together with neighboring high Vp/Vs anomalies, hints at a region of active resurgence or uplift due to the intrusion of new magma at the northern portion of the geothermal field. We interpret high Vp/Vs features as fluid bearing regions potentially favorable for further geothermal exploitation. Deep reaching permeable faults cutting the reservoir unit could explain fluid flow from a deeper local heat source in the area.

Cite

CITATION STYLE

APA

Toledo, T., Gaucher, E., Jousset, P., Jentsch, A., Haberland, C., Maurer, H., … Figueroa, A. (2020). Local Earthquake Tomography at Los Humeros Geothermal Field (Mexico). Journal of Geophysical Research: Solid Earth, 125(12). https://doi.org/10.1029/2020JB020390

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free