Cucumber cotyledon lipoxygenase during postgerminative growth. Its expression and action on lipid bodies

44Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In cucumber (Cucumis sativus), high lipoxygenase-1 (LOX-1) activity has been detected in the soluble fraction prepared from cotyledons of germinating seeds, and the involvement of this enzyme in lipid turnover has been suggested (K. Matsui, M. Irie, T. Kajiwara, A. Hatanaka [1992] Plant Sci 85: 23-32; I. Fuessner, C. Wasternack, H. Kindl, H. Kuhn [1995] Proc Natl Acad Sci USA 92: 11849-11853). In this study we have investigated the expression of the gene Iox-1, corresponding to the LOX-1 enzyme. LOX-1 expression is highly coordinated with that of a typical glyoxysomal enzyme, isocitrate lyase, during the postgerminative stage of cotyledon development. In contrast, although icl transcripts accumulated in tissue during in vitro senescence, no accumulation of lox-1 mRNA could be observed, suggesting that lox-1 plays a specialized role in fat mobilization. LOX-1 is also known to be a major lipid body protein. The partial peptide sequences of purified LOX-1 and lipid body LOX-1 entirely coincided with that deduced from the lox-1 cDNA sequence. The data strongly suggest that LOX-1 and lipid body LOX-1 are derived from a single gene and that LOX-1 can exist both in the cytosol and on the lipid bodies. We constructed an in vitro oxygenation system to address the mechanism of this dual localization and to investigate the action of LOX-1 on lipids in the lipid bodies. LOX-1 cannot act on the lipids in intact lipid bodies, although degradation of lipid body proteins, either during seedling growth or by treatment with trypsin, allows lipid bodies to become susceptible to LOX-1. We discuss the role of LOX-1 in fat mobilization and its mechanism of action.

Cite

CITATION STYLE

APA

Matsui, K., Hijiya, K., Tabuchi, Y., & Kajiwara, T. (1999). Cucumber cotyledon lipoxygenase during postgerminative growth. Its expression and action on lipid bodies. Plant Physiology, 119(4), 1279–1287. https://doi.org/10.1104/pp.119.4.1279

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free