Research into the immunological processes implicated in cancer has yielded a basis for the range of immunotherapies that are now considered the fourth pillar of cancer treatment (alongside surgery, radiotherapy and chemotherapy). For some aggressive cancers, such as advanced non-small-cell lung carcinoma, combination immunotherapies have resulted in unprecedented treatment efficacy for responding patients, and have become frontline therapies. Individualized immunotherapy, enabled by the identification of patient-specific mutations, neoantigens and biomarkers, and facilitated by advances in genomics and proteomics, promises to broaden the responder patient population. In this Perspective, we give an overview of immunotherapies leveraging engineering approaches, including the design of biomaterials, delivery strategies and nanotechnology solutions, for the realization of individualized cancer treatments such as nanoparticle vaccines customized with neoantigens, cell therapies based on patient-derived dendritic cells and T cells, and combinations of theranostic strategies. Developments in precision cancer immunotherapy will increasingly rely on the adoption of engineering principles.
CITATION STYLE
Scheetz, L., Park, K. S., Li, Q., Lowenstein, P. R., Castro, M. G., Schwendeman, A., & Moon, J. J. (2019, October 1). Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering. Nature Publishing Group. https://doi.org/10.1038/s41551-019-0436-x
Mendeley helps you to discover research relevant for your work.