Objective: Docetaxel (DTX), a potent anticancer drug, is suffering from non-specificity and drug resistance as major limitations. In this investigation, we developed Hyaluronic acid (HA)-Docetaxel conjugate (HA-DTX) loaded nanoliposomes to target cancer cells via passive and active targeting approaches. Methods: HA-DTX was synthesized and characterized by UV-Visible spectrophotometry, FT-IR spectroscopy,1H NMR spectroscopy, Differential scanning calorimetry and X-ray diffraction and then loaded into nanoliposomes (L-NLs) by thin-film hydration method. L-NLs were characterized physicochemically and evaluated for anticancer efficacy by in vitro cytotoxicity study in glioma cells (C6 glial cells); cellular uptake and apoptotic effect were investigated by fluorescence microscopy. Results: HA-DTX was successfully synthesized; L-NLs had an average size of 123.0±16.53 nm, polydispersity index of 0.246±0.01 and zeta potential of-44.4±6.79 mV. Also, L-NLs exhibited 90.54%±4.22 of drug loading efficiency and 2.68%±0.12 of drug loading, releasing about 57.72%±1.17 at pH 5.2 and only 14.14%±1.32 at pH 7.4 after 48 h. No significant change in stability was observed after storage at 5 °C±3 °C as well as at 25 °C±2 °C/60% RH±5% RH for 6 mo. The cytotoxicity effect of L-NLs was higher by 10% then that of marketed formulation at 10 µg/ml docetaxel concentration. Fluorescence microscopic investigation showed that more cellular uptake and apoptotic effect were observed in L-NLs treated C6 glial cells than in those treated with the marketed formulation. Conclusion: HA-DTX loaded nanoliposomes enabled docetaxel to target C6 glial cells with better efficacy and might be effective to treat glioma.
CITATION STYLE
Seifu, M. F., Nath, L. K., & Dutta, D. (2020). Hyaluronic acid-docetaxel conjugate loaded nanoliposomes for targeting tumor cells. International Journal of Applied Pharmaceutics, 12(6), 88–99. https://doi.org/10.22159/ijap.2020v12i6.39026
Mendeley helps you to discover research relevant for your work.