Hyaluronic acid-docetaxel conjugate loaded nanoliposomes for targeting tumor cells

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Objective: Docetaxel (DTX), a potent anticancer drug, is suffering from non-specificity and drug resistance as major limitations. In this investigation, we developed Hyaluronic acid (HA)-Docetaxel conjugate (HA-DTX) loaded nanoliposomes to target cancer cells via passive and active targeting approaches. Methods: HA-DTX was synthesized and characterized by UV-Visible spectrophotometry, FT-IR spectroscopy,1H NMR spectroscopy, Differential scanning calorimetry and X-ray diffraction and then loaded into nanoliposomes (L-NLs) by thin-film hydration method. L-NLs were characterized physicochemically and evaluated for anticancer efficacy by in vitro cytotoxicity study in glioma cells (C6 glial cells); cellular uptake and apoptotic effect were investigated by fluorescence microscopy. Results: HA-DTX was successfully synthesized; L-NLs had an average size of 123.0±16.53 nm, polydispersity index of 0.246±0.01 and zeta potential of-44.4±6.79 mV. Also, L-NLs exhibited 90.54%±4.22 of drug loading efficiency and 2.68%±0.12 of drug loading, releasing about 57.72%±1.17 at pH 5.2 and only 14.14%±1.32 at pH 7.4 after 48 h. No significant change in stability was observed after storage at 5 °C±3 °C as well as at 25 °C±2 °C/60% RH±5% RH for 6 mo. The cytotoxicity effect of L-NLs was higher by 10% then that of marketed formulation at 10 µg/ml docetaxel concentration. Fluorescence microscopic investigation showed that more cellular uptake and apoptotic effect were observed in L-NLs treated C6 glial cells than in those treated with the marketed formulation. Conclusion: HA-DTX loaded nanoliposomes enabled docetaxel to target C6 glial cells with better efficacy and might be effective to treat glioma.

Cite

CITATION STYLE

APA

Seifu, M. F., Nath, L. K., & Dutta, D. (2020). Hyaluronic acid-docetaxel conjugate loaded nanoliposomes for targeting tumor cells. International Journal of Applied Pharmaceutics, 12(6), 88–99. https://doi.org/10.22159/ijap.2020v12i6.39026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free