Aiming at solving a typical problem of past research using accident experience statistics of being unable to adapt to changing traffic flows, this paper provides an evaluation method of the risk of vehicle rear-end collisions at red-light-camera (RLC) intersections based on theoretical probabilities. Taking advantage of trajectory data of vehicles at the two similar intersections, which are Cao'an Road and Lvyuan Road with RLCs and Cao'an Road and Anhong Road without RLCs in Shanghai, a binary logit (BL) model of stop-and-go decision-making is established. Using the model and adjusting the headway and potential travel time, we can perform simulation and analysis of rear-end collisions. The result shows that this method is feasible to analyse the influence of RLCs on rear-end collisions. The analysis indicates that RLCs can cause higher speeds for vehicles passing the RLC intersection and more abnormal driving behaviors, which increase the difficulty of stop-and-go decision-making. RLCs do not always lead to an increase of rear-end collisions. For vehicles close to or far from intersection at the decision-making time, RLCs will significantly reduce the possibility of rear-end collisions; however, for vehicles in the potential travel time of 2 s∼3 s, RLCs will increase the probability of rear-end collisions.
CITATION STYLE
Dong, S., Zhang, M., & Li, Z. (2020). Risk Analysis of Vehicle Rear-End Collisions at Intersections. Journal of Advanced Transportation, 2020. https://doi.org/10.1155/2020/2793150
Mendeley helps you to discover research relevant for your work.