Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Consider a monotone Boolean function f : {0, 1}n →{0, 1} and the canonical monotone coupling {ηρ : P ∈ [0, 1]} of an element in {0, 1}n chosen according to product measure with intensity p ∈ [0, 1]. The random point p ∈ [0, 1] where f (ηρ) flips from 0 to 1 is often concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, we peer closely into this threshold window and consider, for large n, the limiting distribution (properly normalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. We determine this distribution for a number of the Boolean functions which are typically studied and pay particular attention to the functions corresponding to iterated majority and percolation crossings. It turns out that these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate probability measure on R arises in this way for some sequence of Boolean functions.

Cite

CITATION STYLE

APA

Ahlberg, D., Steif, J. E., & Pete, G. (2017). Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome? Annales de l’institut Henri Poincare (B) Probability and Statistics, 53(4), 2135–2161. https://doi.org/10.1214/16-AIHP786

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free