Zero-temperature quantum annealing bottlenecks in the spin-glass phase

62Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

Abstract

A promising approach to solving hard binary optimization problems is quantum adiabatic annealing in a transverse magnetic field. An instantaneous ground state-initially a symmetric superposition of all possible assignments of N qubits-is closely tracked as it becomes more and more localized near the global minimum of the classical energy. Regions where the energy gap to excited states is small (for instance at the phase transition) are the algorithm's bottlenecks. Here I show how for large problems the complexity becomes dominated by O(log N) bottlenecks inside the spin-glass phase, where the gap scales as a stretched exponential. For smaller N, only the gap at the critical point is relevant, where it scales polynomially, as long as the phase transition is second order. This phenomenon is demonstrated rigorously for the two-pattern Gaussian Hopfield model. Qualitative comparison with the Sherrington-Kirkpatrick model leads to similar conclusions.

Cite

CITATION STYLE

APA

Knysh, S. (2016). Zero-temperature quantum annealing bottlenecks in the spin-glass phase. Nature Communications, 7. https://doi.org/10.1038/ncomms12370

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free