We use high dynamic range, high-resolution L-band spectroscopy to measure the radial velocity (RV) variations of the hot Jupiter in the τ Boötis planetary system. The detection of an exoplanet by the shift in the stellar spectrum alone provides a measure of the planet's minimum mass, with the true mass degenerate with the unknown orbital inclination. Treating the τ Boo system as a high flux ratio double-lined spectroscopic binary permits the direct measurement of the planet's true mass as well as its atmospheric properties. After removing telluric absorption and cross-correlating with a model planetary spectrum dominated by water opacity, we measure a 6σ detection of the planet at Kp = 111 ± 5 km s-1, with a 1σ upper limit on the spectroscopic flux ratio of 10-4. This RV leads to a planetary orbital inclination of i = 45+3-4° and a mass of Mp = 5.90+0.35-0.20 MJup. We report the first detection of water vapor in the atmosphere of a non-transiting hot Jupiter, τ Boo b. © 2014. The American Astronomical Society. All rights reserved.
CITATION STYLE
Lockwood, A. C., Johnson, J. A., Bender, C. F., Carr, J. S., Barman, T., Richert, A. J. W., & Blake, G. A. (2014). NEAR-IR direct detection of water vapor in tau Boötis b. Astrophysical Journal Letters, 783(2). https://doi.org/10.1088/2041-8205/783/2/L29
Mendeley helps you to discover research relevant for your work.