In a finite system driven out of equilibrium by a constant external force the thermodynamic uncertainty relation (TUR) bounds the variance of the conjugate current variable by the thermodynamic cost of maintaining the nonequilibrium stationary state. Here we highlight a new facet of the TUR by showing that it also bounds the timescale on which a finite system can exhibit anomalous kinetics. In particular, we demonstrate that the TUR bounds subdiffusion in a single file confined to a ring as well as a dragged Gaussian polymer chain even when detailed balance is satisfied. Conversely, the TUR bounds the onset of superdiffusion in the active comb model. Remarkably, the fluctuations in a comb model evolving from a steady state behave anomalously as soon as detailed balance is broken. Our work establishes a link between stochastic thermodynamics and the field of anomalous dynamics that will fertilize further investigations of thermodynamic consistency of anomalous diffusion models.
Mendeley helps you to discover research relevant for your work.