Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers

10Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The most studied perovskite-based solar cells reported up to date contain the toxic lead in its composition. Photovoltaic research and development towards non-toxic, lead-free perovskite solar cells are critical to finding alternatives to reduce human health concerns associated with them. Bismuth-based perovskite variants, especially in the form of methylammonium bismuth iodide (MBI), is a good candidate for the non-toxic light absorber. However, the reported perovskite variant MBI thin films prepared by the solution process so far suffers from poor morphology and surface coverage. In this work, we investigate for the first time the optoelectronic, crystallographic and morphological properties of MBI thin films prepared via thermal co-evaporation of MAI and BiI3. We find by modifying the precursor ratio that the layer with pure MBI composition lead to uniform, compact and homogeneous layers, broadening the options of deposition techniques for lead-free based perovskite solar cells.

Cite

CITATION STYLE

APA

Momblona, C., Kanda, H., Sutanto, A. A., Mensi, M., Roldán-Carmona, C., & Nazeeruddin, M. K. (2020). Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67606-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free