Systemic lupus erythematosus (SLE) is mediated by a chronic and dysregulated inflammatory response. Interleukin (IL)-17, a proinflammatory cytokine, and T helper (Th)17 cells are associated with chronic autoimmune diseases. We hypothesized that inhibition of IL-17 would decrease the numbers of T cell subsets that function as B-cell helpers, as well as B-cell differentiation into plasma cells and autoantibody expression. The IL-17 level was increased markedly in Roquin san/san mice. Loss of IL-17 in Roquin san/san mice improved nephritis by downregulating immunoglobulin (Ig)G, IgG1, and IgG2a production. Formation of germinal centers (GCs), and follicular B- and T-cell differentiation was reduced, whereas the number of regulatory T (Treg) cells and immature B cells was increased, by IL-17 deficiency in Roquin san/san mice. These results suggest that IL-17 inhibition can ameliorate SLE by inhibiting B-cell differentiation into GCs. Therefore, IL-17–producing Th17 cells show promise as a target for development of novel therapeutics for SLE.
CITATION STYLE
Lee, S. yeong, Lee, S. H., Seo, H. B., Ryu, J. G., Jung, K. A., Choi, J. W., … Cho, M. L. (2019). Inhibition of IL-17 ameliorates systemic lupus erythematosus in Roquin san/san mice through regulating the balance of TFH cells, GC B cells, Treg and Breg. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-41534-1
Mendeley helps you to discover research relevant for your work.