Paclitaxel (PTX) treatment efficacy varies in breast cancer, yet the underlying mechanism for variable response remains unclear. This study evaluates whether human epidermal growth factor receptor 2 (HER2) expression level utilizing advanced molecular positron emission tomography (PET) imaging is correlated with PTX treatment efficacy in preclinical mouse models of HER2+ breast cancer. HER2 positive (BT474, MDA-MB-361), or HER2 negative (MDA-MB-231) breast cancer cells were sub-cutaneously injected into athymic nude mice and PTX (15 mg/kg) was administrated. In vivo HER2 expression was quantified through [89Zr]-pertuzumab PET/CT imaging. PTX treatment response was quantified by [18F]-fluorodeoxyglucose ([18F]-FDG) PET/CT imaging. Spearman’s correlation, Kendall’s tau, Kolmogorov–Smirnov test, and ANOVA were used for statistical analysis. [89Zr]-pertuzumab mean standard uptake values (SUVmean) of BT474 tumors were 4.9 ± 1.5, MDA-MB-361 tumors were 1.4 ± 0.2, and MDA-MB-231 (HER2−) tumors were 1.1 ± 0.4. [18F]-FDG SUVmean changes were negatively correlated with [89Zr]-pertuzumab SUVmean (r = −0.5887, p = 0.0030). The baseline [18F]-FDG SUVmean was negatively correlated with initial [89Zr]-pertuzumab SUVmean (r = −0.6852, p = 0.0002). This study shows PTX treatment efficacy is positively correlated with HER2 expression level in human breast cancer mouse models. Molecular imaging provides a non-invasive approach to quantify biological interactions, which will help in identifying chemotherapy responders and potentially enhance clinical decision-making.
CITATION STYLE
Lu, Y., Li, M., Massicano, A. V. F., Song, P. N., Mansur, A., Heinzman, K. A., … Sorace, A. G. (2021). [89zr]-pertuzumab pet imaging reveals paclitaxel treatment efficacy is positively correlated with her2 expression in human breast cancer xenograft mouse models. Molecules, 26(6). https://doi.org/10.3390/molecules26061568
Mendeley helps you to discover research relevant for your work.