Clostridium perfringens type C isolates, which cause enteritis necroticans in humans and enteritis and enterotoxaemias of domestic animals, typically produce (at minimum) beta toxin (CPB), alpha toxin (CPA) and perfringolysin O (PFO) during log-phase growth. To assist development of improved vaccines and therapeutics, we evaluated the contribution of these three toxins to the intestinal virulence of type C disease isolate CN3685. Similar to natural type C infection, log-phase vegetative cultures of wild-type CN3685 caused haemorrhagic necrotizing enteritis in rabbit ileal loops. When isogenic toxin null mutants were prepared using TargeTron® technology, even a double cpa/pfoA null mutant of CN3685 remained virulent in ileal loops. However, two independent cpb null mutants were completely attenuated for virulence in this animal model. Complementation of a cpb mutant restored its CPB production and intestinal virulence. Additionally, pre-incubation of wild-type CN3685 with a CPB-neutralizing monoclonal antibody rendered the strain avirulent for causing intestinal pathology. Finally, highly purified CPB reproduced the intestinal damage of wild-type CN3685 and that damage was prevented by pre-incubating purified CPB with a CPB monoclonal antibody. These results indicate that CPB is both required and sufficient for CN3685-induced enteric pathology, supporting a key role for this toxin in type C intestinal pathogenesis. © 2008 The Authors.
CITATION STYLE
Sayeed, S., Uzal, F. A., Fisher, D. J., Saputo, J., Vidal, J. E., Chen, Y., … McClane, B. A. (2008). Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Molecular Microbiology, 67(1), 15–30. https://doi.org/10.1111/j.1365-2958.2007.06007.x
Mendeley helps you to discover research relevant for your work.