In most ethylene plants, the caustic sections suffer from red-oils formation which results from the polyaldol condensation of some oxygenate species in basic media. These red-oils lead to solid material deposition which is generically referred to as fouling and which can cause severe energy losses or operational issues. This specific red-oil fouling can be successfully mitigated by regularly washing the caustic scrubber with a hydrocarbon washing stream which acts as a solvent. However, such washing streams can be further rerouted to the quench water system, increasing the risk of emulsion formation due to its amphiphilic components, i.e., red-oils, compromising the safe operation of the whole plant. The complexity of red-oil structures renders its analysis and characterization challenging. Consequently, there has been no study showing the effect of the type of hydrocarbon wash on the red-oils structure and its potential emulsifying properties. This study describes an in-house developed analytical technique based on UPLC-High resolution QTOF which allows characterizing hydrocarbon streams with complex mixtures of oxygenated species. This method has been successfully applied to monitor red-oil structures during a plant trial where Pyrolysis Gasoline and Toluene-Xylene hydrocarbon washes were successively applied. The data revealed that reactive compounds from the Pyrolysis Gasoline react with the polyaldol species, likely through a Diels-Alder mechanism, thus increasing the diene adduct concentration in the red-oil. It was further found that toluene-xylene washes hindered the emulsifying properties of the red-oils more effectively than Pyrolysis Gasoline washes, in that they could best inhibit the formation of polyaldols adducts.
CITATION STYLE
Cuoq, F., Vachon, J., Jordens, J., & Kwakkenbos, G. (2016). Red-oils in ethylene plants: formation mechanisms, structure and emulsifying properties. Applied Petrochemical Research, 6(4), 397–402. https://doi.org/10.1007/s13203-016-0171-0
Mendeley helps you to discover research relevant for your work.