Hydrologic Effects of Fire in a Sub-Alpine Watershed: Ages Outperforms Previous PRMS Simulations

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Forest fires alter hydrologic responses to precipitation, and streamflow changes can be challenging to simulate. Streamflow data before and after wildfire in a 14 km2 mixed-conifer, sub-alpine watershed in south-central New Mexico were used to calibrate a watershed model (Agricultural Ecosystems Services, AgES) using four years of prefire and postfire conditions. Streamflow results and parameter values from AgES and a prior Precipitation Runoff Modeling System (PRMS) modeling study in the same watershed were compared. Both AgES and PRMS simulated the dramatic change in streamflow response to precipitation after a fire, including a smaller precipitation threshold to induce streamflow. Still, AgES had substantially less bias and better performance when comparing monthly metrics. Only AgES was assessed at the daily scale. AgES simulated daily streamflow accurately throughout the study period, with slight overestimation in the prefire period (Oct 2007 to Oct 2011, 1.2% bias, 0.90 Nash-Sutcliffe efficiency [NSE]) and in the postfire period (Oct 2013 to Oct 2017, 4.4% bias, 0.54 NSE). Although each 4-year model period had nearly identical cumulative precipitation, annual streamflow increased by 170% in the postfire period compared to the prefire period. Appropriate soil and vegetation parameters were modified by the stepwise calibration process to represent the effects of fire in AgES: interception storage was decreased for rain (-99.8%) and snow (-26%), two factors influencing ET were decreased, soil depression storage was reduced (-97%), and soil field capacity was reduced (-50%). AgES demonstrated an improved streamflow simulation compared with PRMS, calibrated parameter shifts that were more consistent to interpret, and particular skill in simulating daily streamflow response to fire. Knowledge gained from this study will guide future simulations of hydrologic responses to fires in the western USA using AgES.

Cite

CITATION STYLE

APA

Mankin, K. R., Wells, R., Kipka, H., Green, T. R., & Barnard, D. (2022). Hydrologic Effects of Fire in a Sub-Alpine Watershed: Ages Outperforms Previous PRMS Simulations. Journal of the ASABE, 65(4), 751–762. https://doi.org/10.13031/ja.14881

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free