Lower bounds for linear decision trees via an energy complexity argument

4Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A linear decision tree is a binary decision tree in which a classification rule at each internal node is defined by a linear threshold function. In this paper, we consider a linear decision tree T where the weights w1, w2, ..., wn of each linear threshold function satisfy ∑i|wi| ≤ w for an integer w, and prove that if T computes an n-variable Boolean function of large unbounded-error communication complexity (such as the Inner-Product function modulo two), then T must have 2Ω(√n)/w leaves. To obtain the lower bound, we utilize a close relationship between the size of linear decision trees and the energy complexity of threshold circuits; the energy of a threshold circuit C is defined to be the maximum number of gates outputting "1," where the maximum is taken over all inputs to C. In addition, we consider threshold circuits of depth ω(1) and bounded energy, and provide two exponential lower bounds on the size (i.e., the number of gates) of such circuits. © 2011 Springer-Verlag GmbH.

Cite

CITATION STYLE

APA

Uchizawa, K., & Takimoto, E. (2011). Lower bounds for linear decision trees via an energy complexity argument. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6907 LNCS, pp. 568–579). https://doi.org/10.1007/978-3-642-22993-0_51

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free