Electrochemical Detection of ompA Gene of C. sakazakii Based on Glucose-Oxidase-Mimicking Nanotags of Gold-Nanoparticles-Doped Copper Metal-organic Frameworks

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The present work developed an electrochemical genosensor for the detection of virulence outer membrane protein A (ompA, tDNA) gene of Cronobacter sakazakii (C. sakazakii) by exploiting the excellent glucose-oxidase-mimicking activity of copper Metal-organic frameworks (Cu-MOF) doped with gold nanoparticle (AuNPs). The signal nanotags of signal probes (sDNA) that biofunctionalized AuNPs@Cu-MOF (sDNA-AuNPs@Cu-MOF) were designed using an Au-S bond. The biosensor was prepared by immobilization capture probes (cDNA) onto an electrodeposited AuNPs-modified glassy carbon electrode (GCE). AuNPs@Cu-MOF was introduced onto the surface of the GCE via a hybridization reaction between cDNA and tDNA, as well as tDNA and sDNA. Due to the enhanced oxidase-mimicking activity of AuNPs@Cu-MOF to glucose, the biosensor gave a linear range of 1.0 × 10−15 to 1.0 × 10−9 mol L−1 to tDNA with a detection limit (LOD) of 0.42 fmol L−1 under optimized conditions using differential pulse voltammetry measurement (DPV). It can be applied in the direct detection of ompA gene segments in total DNA extracts from C. sakazakii with a broad linear range of 5.4−5.4 × 105 CFU mL−1 and a LOD of 0.35 CFU mL−1. The biosensor showed good selectivity, fabricating reproducibility and storage stability, and can be used for the detection of ompA gene segments in real samples with recovery between 87.5% and 107.3%.

Cite

CITATION STYLE

APA

Zhang, H., Xu, G., Chen, Y., Li, X., Wang, S., Jiang, F., … Tao, Y. (2023). Electrochemical Detection of ompA Gene of C. sakazakii Based on Glucose-Oxidase-Mimicking Nanotags of Gold-Nanoparticles-Doped Copper Metal-organic Frameworks. Sensors, 23(9). https://doi.org/10.3390/s23094396

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free