Background The use of the HIV antiretroviral drug stavudine (d4T), a thymidine analogue, is associated with the development of mitochondrial toxicities such as sensory neuropathy (SN). Genetic variation in genes relating to d4T transport and metabolism, as well as genetic variation in the thymidine synthesis pathway, could influence occurrence of d4T-related toxicity. Methods We examined this hypothesis in a cohort of HIV-positive South African adults exposed to d4T, including 143 cases with SN and 120 controls without SN. Ten SNPs in four genes associated with stavudine transport, and 16 SNPs in seven genes of the thymidine synthesis / phosphorylation pathway were genotyped using Agena mass spectrometry methods. Associations between sensory neuropathy and genetic variants were evaluated using PLINK by univariate and multivariable analyses. Results Age and height were significantly associated with SN occurrence. Using logistic regression with age and height as covariates, and uncorrected empirical p-values, genetic variation in SLC28A1, SAMHD1, MTHFR and RRM2B was associated with SN in South Africans using d4T. Conclusion Variation in genes relating to d4T transport and metabolism, as well as genetic variation in the thymidine synthesis pathway may influence occurrence of d4T-related SN. These data contribute to the characterisation of African pharmacogenetic variation and its role in adverse response to antiretroviral therapy.
CITATION STYLE
Moketla, M. B., Wadley, A. L., Kamerman, P., & De Assis Rosa, D. (2018). Pharmacogenetic variation influences sensory neuropathy occurrence in Southern Africans treated with stavudine-containing antiretroviral therapy. PLoS ONE, 13(10). https://doi.org/10.1371/journal.pone.0204111
Mendeley helps you to discover research relevant for your work.