Differential expression of glial cell line-derived neurotrophic factor splice variants in the mouse brain

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain, α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neuroprotective effects on dopamine neurons. However, the expression of the GDNF splice variants in dopaminergic neurons in the brain remains unclear. Therefore, in this study, we investigated the mRNA and protein expression of α- and β-pro-GDNF in the mouse brain by real-time quantitative polymerase chain reaction, using splice variant-specific primers, and western blot analysis. At the mRNA level, β-pro-GDNF expression was significantly greater than that of α-pro-GDNF in the mouse brain. In contrast, at the protein level, α-pro-GDNF expression was markedly greater than that of β-pro-GDNF. To clarify the mechanism underlying this inverse relationship in mRNA and protein expression levels of the GDNF splice variants, we analyzed the expression of sorting protein-related receptor with A-type repeats (SorLA) by real-time quantitative polymerase chain reaction. At the mRNA level, SorLA was positively associated with β-pro-GDNF expression, but not with α-pro-GDNF expression. This suggests that the differential expression of α- and β-pro-GDNF in the mouse brain is related to SorLA expression. As a sorting protein, SorLA could contribute to the inverse relationship among the mRNA and protein levels of the GDNF isoforms. This study was approved by the Animal Ethics Committee of Xuzhou Medical University, China on July 14, 2016.

Cite

CITATION STYLE

APA

Gu, X. H., Li, H., Zhang, L., He, T., Chai, X., Wei, H., & Gao, D. S. (2020). Differential expression of glial cell line-derived neurotrophic factor splice variants in the mouse brain. Neural Regeneration Research, 15(2), 270–276. https://doi.org/10.4103/1673-5374.265561

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free