Epitaxial growth and scanning tunneling microscopy of LiV2O4thin films on SrTiO3(111)

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

LiV2O4 is a mixed-valent spinel oxide and one of a few transition-metal compounds to host a heavy fermion phase at low temperatures. Although numerous experimental studies have attempted to elucidate how its 3d electrons undergo giant mass renormalization, spectroscopic probes that may provide crucial hints, such as scanning tunneling microscopy (STM), remain to be applied. A prerequisite is atomically flat and pristine surfaces, which, in the case of LiV2O4, are difficult to obtain by the cleavage of small, three-dimensional crystals. We report the epitaxial growth of LiV2O4 thin films with bulklike properties on SrTiO3(111) via pulsed laser deposition and stable STM imaging of the LiV2O4(111) surface. The as-grown films were transferred ex situ to a room-temperature STM, where subsequent annealing with optional sputtering in ultrahigh vacuum enabled compact islands with smooth surfaces and a hexagonal 1 × 1 atomic lattice to be resolved. Our STM measurements provide insights into the growth mechanisms of LiV2O4 on SrTiO3(111) as well as demonstrate the feasibility of performing surface-sensitive measurements of this heavy fermion compound.

Cite

CITATION STYLE

APA

Schweizer, T. F., Niemann, U., Que, X., He, Q., Zhou, L., Kim, M., … Huang, D. (2023). Epitaxial growth and scanning tunneling microscopy of LiV2O4thin films on SrTiO3(111). APL Materials, 11(2). https://doi.org/10.1063/5.0140576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free